Course Title:	Design and Analysis of Experiments	
Course Code:	BSTA-302	
Semester:	V	
Credit Hours:	03	

Learning Outcomes

By the end of this course, students will be able to:

- 1. understand the basic principles of experimental design.
- 2. apply ANOVA and various multiple comparison tests.
- 3. learn the layout factorial experiments.
- 4. know the construction of Split-plot designs.

Course Outline

Unit – I

1.1 Introduction and Principles of Experimental Design

Concept of experiment. Planning of experiment. Design of experiment and its terminology, Treatment arrays. Principles of experimental designs: Logical control on error. Basic methods for increasing the efficiency of experiments, Estimation of treatment contrasts and their precision, treatment structure, comparison with a control.

1.2 Analysis of Variance (ANOVA)

Analysis of Variance (ANOVA). One-way and Two-way Classifications: Layout, Statistical Model and Applications. Multiple comparison test: LSD Test.

Unit – II

2.1 Basic Designs of Experiment

Introduction. Basic Principles of Experimental Design. Basic Designs of Experiment (CRD, RCB, LSD): Theory and Applications, Estimation of Missing Observations, Relative Efficiency. Basic concepts of Fixed, Random and Mixed effect models.

Unit – III

3.1 Factorial Experiments

Factorial Design with Applications.

3.2 Covariance Analysis of Experimental Designs

Covariance analysis for Completely Randomized Design.

• Teaching-learning Strategies:

Class Lecture method, which includes seminars, discussions, assignments and projects. (Audiovisual tools are used where necessary)

• Assignments-Types and Number with calendar:

According to the choice of respective teacher.

• Assessment and Examinations:

According to the University's Semester Rules.

Sr. No.	Elements	Weightage	Details
1.	Midterm Assessment	35%	It takes place at the mid-point of the semester.
2.	Formative Assessment	25%	It is continuous assessment. It includes: Classroom participation, attendance, assignments, and presentations, homework, attitude and behavior, hands-on-activities, short tests, quizzes etc.
3.	Final Assessment	40%	It takes place at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.

Textbook:

1. Montgomery, D.C. (2020). *The Design and Analysis of Experiments* (5th ed.). John Wiley and Sons, New York.

Suggested Readings:

- 1. Clewer, A. G., & Scarisbrig, D. H. (2013). *Practical Statistics and Experimental Design for Plant and Crop Science*. John Wiley and Sons, New York.
- 2. Cochran, W.C., & Cox, G.M. (2012). *Experimental Design* (3rd ed.). John Wiley and Sons, New York.
- 3. Steel, R.G.D., Torrie, J.H., & Dickey, D.A. (2008). *Principles and Procedures of Statistics: A Biometrical Approach*. McGraw-Hill, Michigan, USA.